skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Xingyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We demonstrate heterogeneous integration of solid-state nanophotonic cavities into a scalable photonic platform as an efficient optical interface for quantum memories based on diamond color centers.

     
    more » « less
  2. We present an efficient microwave and optical interface for quantum memories at 1.3 K based on tin-vacancy color centers in diamond and scalable integrated photonics.

     
    more » « less
  3. The negatively charged silicon monovacancyVSiin 4H silicon carbide (SiC) is a spin-active point defect that has the potential to act as a qubit in solid-state quantum information applications. Photonic crystal cavities (PCCs) can augment the optical emission of theVSi, yet fine-tuning the defect–cavity interaction remains challenging. We report on two postfabrication processes that result in enhancement of theV1optical emission from our PCCs, an indication of improved coupling between the cavity and ensemble of silicon vacancies. Below-bandgap irradiation at 785-nm and 532-nm wavelengths carried out at times ranging from a few minutes to several hours results in stable enhancement of emission, believed to result from changing the relative ratio ofVSi0(“dark state”) toVSi(“bright state”). The much faster change effected by 532-nm irradiation may result from cooperative charge-state conversion due to proximal defects. Thermal annealing at 100 °C, carried out over 20 min, also results in emission enhancements and may be explained by the relatively low-activation energy diffusion of carbon interstitialsCi, subsequently recombining with other defects to create additionalVSis. These PCC-enabled experiments reveal insights into defect modifications and interactions within a controlled, designated volume and indicate pathways to improved defect–cavity interactions.

     
    more » « less
  4. Abstract

    Cartilage is difficult to self‐repair and it is more challenging to repair an osteochondral defects concerning both cartilage and subchondral bone. Herein, it is hypothesized that a bilayered porous scaffold composed of a biomimetic gelatin hydrogel may, despite no external seeding cells, induce osteochondral regeneration in vivo after being implanted into mammal joints. This idea is confirmed based on the successful continuous 3D‐printing of the bilayered scaffolds combined with the sol‐gel transition of the aqueous solution of a gelatin derivative (physical gelation) and photocrosslinking of the gelatin methacryloyl (gelMA) macromonomers (chemical gelation). At the direct printing step, a nascent physical hydrogel is extruded, taking advantage of non‐Newtonian and thermoresponsive rheological properties of this 3D‐printing ink. In particular, a series of crosslinked gelMA (GelMA) and GelMA‐hydroxyapatite bilayered hydrogel scaffolds are fabricated to evaluate the influence of the spacing of 3D‐printed filaments on osteochondral regeneration in a rabbit model. The moderately spaced scaffolds output excellent regeneration of cartilage with cartilaginous lacunae and formation of subchondral bone. Thus, tricky rheological behaviors of soft matter can be employed to improve 3D‐printing, and the bilayered hybrid scaffold resulting from the continuous 3D‐printing is promising as a biomaterial to regenerate articular cartilage.

     
    more » « less